

Welcome to Metagenomics Workshop!

Welcome to the one-day metagenomics assembly workshop. This tutorial will guide you through the
typical steps of metagenome assembly and binning.

	Setting up your de.NBI Cloud SimpleVM instance

	The Tutorial Data Set

	FastQC Quality Control

	Assembly
	Velvet Assembly

	MEGAHIT Assembly

	metaSPAdes Assembly

	IDBA-UD Assembly

	Ray Assembly

	Gene Prediction

	Assembly Evaluation
	Read Mapping

	MetaQUAST

	Binning
	MaxBin Binning

	MetaBAT Binning

	Classification
	Genome Taxonomy Database (GTDB)

	Kraken Taxonomic Sequence Classification System

Setting up your de.NBI Cloud SimpleVM instance

As metagenome assemblies require a lot of compute resources, we will run the tutorial
in the de.NBI Cloud <http://cloud.denbi.de>. Each workshop participant has access to
a virtual machine and run all jobs on it.
All necessary software tools have been pre-installed on this VM.

Use the link you received via e-Mail to connect to your instance and open a terminal.

The Tutorial Data Set

We have prepared a small toy data set for this tutorial. Please use the
following commands to download the data to your VM:

sudo chown ubuntu:ubuntu /mnt
cd /mnt
wget https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/denbi-mg-course/WGS-data.tar
tar xvf WGS-data.tar

The /mnt/WGS-data directory has the following content:

	File

	Content

	genomes/

	Directory containing the reference genomes

	gold_std/

	Gold Standard assemblies

	read1.fq

	Read 1 of paired reads (FASTQ)

	read2.fq

	Read 2 of paired reads (FASTQ)

	reads.fas

	Shuffled reads (FASTA)

FastQC Quality Control

FastQC aims to provide a simple way to do some quality control checks
on raw sequence data coming from high throughput sequencing
pipelines. It provides a modular set of analyses which you can use to
give a quick impression of whether your data has any problems of which
you should be aware before doing any further analysis.

The main functions of FastQC are

	Import of data from BAM, SAM or FastQ files (any variant)

	Providing a quick overview to tell you in which areas there may be problems

	Summary graphs and tables to quickly assess your data

	Export of results to an HTML based permanent report

	Offline operation to allow automated generation of reports without running the interactive application

See the FastQC home page [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] for more info.

To run FastQC on our data, simply type:

cd /mnt/WGS-data
fastqc read1.fq read2.fq

After FastQC finished running you can access the report using a web browser:

firefox *.html

Check out the FastQC home page [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] for examples
of reports including bad data.

Assembly

We are going to use different assemblers and compare the results.

	Velvet Assembly

	MEGAHIT Assembly

	metaSPAdes Assembly

	IDBA-UD Assembly

	Ray Assembly

Velvet Assembly

Velvet was one of the first de novo genomic assemblers specially
designed for short read sequencing technologies. It was developed by
Daniel Zerbino and Ewan Birney at the European Bioinformatics
Institute (EMBL-EBI). Velvet currently takes in short read sequences,
removes errors then produces high quality unique contigs. It then uses
paired-end read and long read information, when available, to retrieve
the repeated areas between contigs. See the Velvet GitHub page [https://github.com/dzerbino/velvet] for more info.

Step 1: velveth

velveth takes in a number of sequence files, produces a hashtable, then
outputs two files in an output directory (creating it if necessary), Sequences
and Roadmaps, which are necessary for running velvetg in the next step.

Let’s create multiple hashtables using kmer-lengths of 31 and 51. We
are going to run two jobs in parallel:

cd /mnt/WGS-data

velveth velvet_31 31 -shortPaired -fastq -separate read1.fq read2.fq &
velveth velvet_51 51 -shortPaired -fastq -separate read1.fq read2.fq &

Once the two jobs are finished (use top to monitor your jobs), you
should have two output directories for the two different kmer-lengths:
velvet_31 and velvet_51.

Step 2: velvetg

Now we have to start the actual assembly using
velvetg. velvetg is the core of Velvet where the de Bruijn
graph is built then manipulated. Let’s run assemblies for both
kmer-lengths. See the Velvet manual [https://github.com/dzerbino/velvet/blob/master/Manual.pdf] for more
info about parameter settings. Again, we submit the job to the compute
cluster:

velvetg velvet_31 -cov_cutoff auto -ins_length 270 -min_contig_lgth 500 -exp_cov auto &
velvetg velvet_51 -cov_cutoff auto -ins_length 270 -min_contig_lgth 500 -exp_cov auto &

The contig sequences are located in the velvet_31 and velvet_51
directories in file contigs.fa. Let’s get some very basic statistics
on the contigs. The script getN50.pl reads the contig file and
computes the total length of the assembly, number of contigs, N50 and
largest contig size. In our example we will exclude contigs shorter
than 500bp (option -s 500):

getN50.pl -s 500 -f velvet_31/contigs.fa
getN50.pl -s 500 -f velvet_51/contigs.fa

MEGAHIT Assembly

MEGAHIT is a single node assembler for large and complex metagenomics
NGS reads, such as soil. It makes use of succinct de Bruijn graph
(SdBG) to achieve low memory assembly. MEGAHIT can optionally utilize
a CUDA-enabled GPU to accelerate its SdBG contstruction. See the
MEGAHIT home page [https://github.com/voutcn/megahit/] for more
info.

MEGAHIT can be run by the following command. As our compute instance
have multiple cores, we use the option -t 14 to tell MEGAHIT it
should use 14 parallel threads. The output will be redirected to file
megahit.log:

cd /mnt/WGS-data

megahit -1 read1.fq -2 read2.fq -t 14 -o megahit_out

The contig sequences are located in the megahit_out directory in
file final.contigs.fa. Again, let’s get some basic statistics on the
contigs:

getN50.pl -s 500 -f megahit_out/final.contigs.fa

metaSPAdes Assembly

SPAdes – St. Petersburg genome assembler – is an assembly toolkit
containing various assembly pipelines. See the SPAdes home page [http://cab.spbu.ru/software/spades/] for more info.

metaSPAdes can be run by the following command:

cd /mnt/WGS-data

metaspades.py -o metaspades_out --pe1-1 read1.fq --pe1-2 read2.fq

The contig sequences are located in the metaspades_out directory in
file contigs.fasta. Again, let’s get some basic statistics on the
contigs:

getN50.pl -s 500 -f metaspades_out/contigs.fasta

IDBA-UD Assembly

IDBA is the basic iterative de Bruijn graph assembler for
second-generation sequencing reads. IDBA-UD, an extension of IDBA, is
designed to utilize paired-end reads to assemble low-depth regions and
use progressive depth on contigs to reduce errors in high-depth
regions. It is a generic purpose assembler and epspacially good for
single-cell and metagenomic sequencing data. See the IDBA home page [https://github.com/loneknightpy/idba] for more info.

IDBA-UD requires paired-end reads stored in single FastA file and a
pair of reads is in consecutive two lines. You can use fq2fa (part
of the IDBA repository) to merge two FastQ read files to a single
file. The following command will generate a FASTA formatted file
called reads12.fas by “shuffling” the reads from FASTQ files
read1.fq and read2.fq:

cd /mnt/WGS-data

fq2fa --merge read1.fq read2.fq reads12.fas

IDBA-UD can be run by the following command. As our compute instances
have multiple cores, we use the option –num_threads 14 to tell
IDBA-UD it should use 14 parallel threads:

cd /mnt/WGS-data

idba_ud -r reads12.fas --num_threads 14 -o idba_ud_out

The contig sequences are located in the idba_ud_out directory in file contig.fa. Again, let’s get some basic statistics on the contigs:

getN50.pl -s 500 -f idba_ud_out/contig.fa

Ray Assembly

Ray is a parallel software that computes de novo genome assemblies
with next-generation sequencing data. Ray is written in C++ and can
run in parallel on numerous interconnected computers using the
message-passing interface (MPI) standard. See the Ray home page [http://denovoassembler.sourceforge.net/] for more info.

Ray can be run by the following command using a kmer-length of 51 and
31, repectively. As our compute instance have multiple cores, we
specify this in the `mpiexec -n 14 ` command to let Ray know it should
use 14 parallel MPI processes:

cd /mnt/WGS-data

mpiexec -n 14 /usr/local/bin/Ray -k 51 -p read1.fq read2.fq -o ray_51

If there is enough time, you can run another Ray assembly using a smaller
kmer size:

mpiexec -n 14 /usr/local/bin/Ray -k 31 -p read1.fq read2.fq -o ray_31

This will create the output directory ray_51 (and ray_31), the final
contigs are located in ray_51/Contigs.fasta (and
ray_31/Contigs.fasta). Again, let’s get some basic statistics on the
contigs:

getN50.pl -s 500 -f ray_51/Contigs.fasta
getN50.pl -s 500 -f ray_31/Contigs.fasta

Now that you have run assemblies using Velvet, MEGAHIT, IDBA-UD and Ray, let’s have a quick look at the assembly statistics of all of them:

cd /mnt/WGS-data
sh ./get_assembly_stats.sh

Gene Prediction

Prodigal (Prokaryotic Dynamic Programming Genefinding Algorithm) is a
microbial (bacterial and archaeal) gene finding program developed at
Oak Ridge National Laboratory and the University of Tennessee. See the
Prodigal home page [http://prodigal.ornl.gov/] for more info.

To run prodigal on our data, simply type:

cd /mnt/WGS-data/megahit_out

prodigal -p meta -a final.contigs.genes.faa -d final.contigs.genes.fna -f gff -o final.contigs.genes.gff -i final.contigs.fa

Output files:

	final.contigs.genes.gff

	positions of predicted genes in GFF format

	final.contigs.genes.faa

	protein translations of predicted genes

	final.contigs.genes.fna

	nucleotide sequences of predicted genes

Assembly Evaluation

We are going to evaluate our assemblies using the reference genomes.

	Read Mapping

	MetaQUAST

Read Mapping

In this part of the tutorial we will look at the assemblies by mapping
the reads to the assembled contigs. Different tools exists for
mapping reads to genomic sequences such as bowtie [http://bowtie-bio.sourceforge.net/bowtie2/index.shtml] or bwa [http://bio-bwa.sourceforge.net/]. Today, we will use the tool
BBMap.

BBMap: Short read aligner for DNA and RNA-seq data. Capable of
handling arbitrarily large genomes with millions of scaffolds. Handles
Illumina, PacBio, 454, and other reads; very high sensitivity and
tolerant of errors and numerous large indels. Very fast. See the
BBTools home page [https://jgi.doe.gov/data-and-tools/bbtools/bb-tools-user-guide/] for more
info.

bbmap needs to build an index for the contigs sequences before it
can map the reads onto them. Here is an example command line for
mapping the reads back to the MEGAHIT assembly:

cd /mnt/WGS-data/megahit_out

bbmap.sh ref=final.contigs.fa

Now that we have an index, we can map the reads:

bbmap.sh in=../read1.fq in2=../read2.fq out=megahit.bam threads=14

bbmap produces output in BAM format (the binary version of the SAM format [http://samtools.github.io/hts-specs/SAMv1.pdf]). BAM files can be viewed and manipulated with SAMtools [http://www.htslib.org/]. Let’s first build an index for the FASTA file:

samtools faidx final.contigs.fa

We have to sort the BAM file by starting position of the alignments. This can be done using samtools again:

samtools sort -o megahit_sorted.bam -@ 14 megahit.bam

Now we have to index the sorted BAM file:

samtools index megahit_sorted.bam

To look at the BAM file use:

samtools view megahit_sorted.bam | less

We will use the IGV genome browser to look at the mappings:

igv

Now let’s look at the mapped reads:

	Load the contig sequences into IGV. Use the menu Genomes->Load Genome from File...

	Load the BAM file into IGV. Use menu File->Load from File...

	Load the predicted genes as another track. Use menu File->Load from File... to load the GFF file.

MetaQUAST

QUAST stands for QUality ASsessment Tool. The tool evaluates genome
assemblies by computing various metrics. You can find all project
news and the latest version of the tool at sourceforge [http://sourceforge.net/projects/quast]. QUAST utilizes MUMmer,
GeneMarkS, GeneMark-ES, GlimmerHMM, and GAGE. In addition, MetaQUAST
uses MetaGeneMark, Krona tools, BLAST, and SILVA 16S rRNA
database. See the metaQuast home page [http://quast.sourceforge.net/metaquast//]
for more info.

In case not all assemblies finished so far, copy the pre-computed
assembly results to your local directory:

cd /mnt/WGS-data
wget https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/denbi-mg-course/assembly_results.tar
tar xvf assembly_results.tar
cp -v -r /mnt/WGS-data/assembly_results/* .

To call metaquast.py we have to provide reference genomes which
are used to calculate a number of different metrics for evaluation of
the assembly. In real-world metagenomics, these references are usually
not available, of course:

cd /mnt/WGS-data

metaquast.py --threads 14 --gene-finding \
-R /mnt/WGS-data/genomes/Aquifex_aeolicus_VF5.fna,\
/mnt/WGS-data/genomes/Bdellovibrio_bacteriovorus_HD100.fna,\
/mnt/WGS-data/genomes/Chlamydia_psittaci_MN.fna,\
/mnt/WGS-data/genomes/Chlamydophila_pneumoniae_CWL029.fna,\
/mnt/WGS-data/genomes/Chlamydophila_pneumoniae_J138.fna,\
/mnt/WGS-data/genomes/Chlamydophila_pneumoniae_LPCoLN.fna,\
/mnt/WGS-data/genomes/Chlamydophila_pneumoniae_TW_183.fna,\
/mnt/WGS-data/genomes/Chlamydophila_psittaci_C19_98.fna,\
/mnt/WGS-data/genomes/Finegoldia_magna_ATCC_29328.fna,\
/mnt/WGS-data/genomes/Fusobacterium_nucleatum_ATCC_25586.fna,\
/mnt/WGS-data/genomes/Helicobacter_pylori_26695.fna,\
/mnt/WGS-data/genomes/Lawsonia_intracellularis_PHE_MN1_00.fna,\
/mnt/WGS-data/genomes/Mycobacterium_leprae_TN.fna,\
/mnt/WGS-data/genomes/Porphyromonas_gingivalis_W83.fna,\
/mnt/WGS-data/genomes/Wigglesworthia_glossinidia.fna \
-o quast \
-l MegaHit,metaSPAdes,Ray_31,Ray_51,velvet_31,velvet_51,idba_ud \
megahit_out/final.contigs.fa \
metaspades_out/contigs.fasta \
ray_31/Contigs.fasta \
ray_51/Contigs.fasta \
velvet_31/contigs.fa \
velvet_51/contigs.fa \
idba_ud_out/contig.fa

QUAST generates HTML reports including a number of interactive graphics. To access these reports,
load the reports in your web browser:

firefox quast/report.html

Binning

After the assembly of metagenomic sequencing reads into contigs,
binning algorithms try to recover individual genomes to allow access
to uncultivated microbial populations that may have important roles in
the samples community.

	MaxBin Binning

	MetaBAT Binning

MaxBin Binning

MaxBin is a software that is capable of clustering metagenomic contigs
into different bins, each consists of contigs from one species. MaxBin
uses the nucleotide composition information and contig abundance
information to do achieve binning through an Expectation-Maximization
algorithm. For users’ convenience MaxBin will report genome-related
statistics, including estimated completeness, GC content and genome
size in the binning summary page. See the MaxBin home page [http://downloads.jbei.org/data/microbial_communities/MaxBin/MaxBin.html]
for more info.

Let’s run a MaxBin binning on the MEGAHIT assembly. First, we need to
generate an abundance file from the mappes reads:

cd /mnt/WGS-data/megahit_out
mkdir maxbin
cd maxbin

Activate the conda base environment to get MaxBin into the PATH:

conda activate base

Then:

pileup.sh in=../megahit_sorted.bam out=cov.txt
awk '{print $1"\t"$5}' cov.txt | grep -v '^#' > abundance.txt

Next, we can run MaxBin:

run_MaxBin.pl -thread 14 -contig ../final.contigs.fa -out maxbin -abund abundance.txt

Assume your output file prefix is (out). MaxBin will generate information using this file header as follows.

	(out).0XX.fasta

	the XX bin. XX are numbers, e.g. out.001.fasta

	(out).summary

	summary file describing which contigs are being
classified into which bin.

	(out).log

	log file recording the core steps of MaxBin algorithm

	(out).marker

	marker gene presence numbers for each bin. This table
is ready to be plotted by R or other 3rd-party software.

	(out).marker.pdf

	visualization of the marker gene presence numbers using R

	(out).noclass

	all sequences that pass the minimum length threshold but
are not classified successfully.

	(out).tooshort

	all sequences that do not meet the minimum length threshold.

Now you can run a gene prediction on each genome bin and BLAST one sequence for each bin
for a (very crude!) classification:

for i in max*fasta; do prodigal -p meta -a $i.genes.faa -d $i.genes.fna -f gff -o $i.genes.gff -i $i& done

Does the abundance of the bins match the 16S profile of the community?

MetaBAT Binning

MetaBAT, An Efficient Tool for Accurately Reconstructing Single
Genomes from Complex Microbial Communities.

Grouping large genomic fragments assembled from shotgun metagenomic
sequences to deconvolute complex microbial communities, or metagenome
binning, enables the study of individual organisms and their
interactions. MetaBAT is an automated metagenome binning software
which integrates empirical probabilistic distances of genome abundance
and tetranucleotide frequency. See the MetaBAT home page [https://bitbucket.org/berkeleylab/metabat]
for more info.

Let’s run a MetaBAT binning on the MEGAHIT assembly:

cd /mnt/WGS-data/megahit_out
mkdir metabat
cd metabat

runMetaBat.sh ../megahit_out/final.contigs.fa ../megahit_out/megahit_sorted.bam

MetaBAT will generate 11 bins from our assembly:

ls final.contigs.fa.metabat-bins

bin.1.fa
bin.2.fa
bin.3.fa
bin.4.fa
bin.5.fa
bin.6.fa
bin.7.fa
bin.8.fa
bin.9.fa
bin.10.fa
bin.11.fa

Classification

Taxonomonic classification tools assign taxonommic labels to reads or
assembled contigs of metagenomic datasets.

	Genome Taxonomy Database (GTDB)

	Kraken Taxonomic Sequence Classification System

Genome Taxonomy Database (GTDB)

GTDB-Tk is a software toolkit for assigning objective taxonomic
classifications to bacterial and archaeal genomes based on the
Genome Database Taxonomy GTDB [https://gtdb.ecogenomic.org].
It is designed to work with recent
advances that allow hundreds or thousands of metagenome-assembled
genomes (MAGs) to be obtained directly from environmental samples.
It can also be applied to isolate and single-cell genomes.

See the GTDBTk homepage [https://ecogenomics.github.io/GTDBTk/index.html]
for more info.

First, we need to download the GTDB database files. The database is pretty
big (33 Gb), so even downloading it from our local copy in the de.NBI Cloud
will take a couple of minutes. After downloading, we need to extract the
tar archive (please be patient ;):

cd /mnt
wget https://openstack.cebitec.uni-bielefeld.de:8080/swift/v1/denbi-mg-course/gtdbtk_r95_data.tar.gz
tar xvzf gtdbtk_r95_data.tar.gz

Now we need to set an environment variable that stores the path to
the database:

export GTDBTK_DATA_PATH=/mnt/release95

Next, let’s assign taxonomic labels to our binning results using
GTDB-Tk:

cd /mnt/WGS-data/megahit_out/maxbin
gtdbtk classify_wf --extension fasta --cpus 14 --genome_dir . --out_dir gtdbtk_out

Kraken Taxonomic Sequence Classification System

Kraken is a system for assigning taxonomic labels to short DNA
sequences, usually obtained through metagenomic studies. Kraken aims
to achieve high sensitivity and high speed by utilizing exact
alignments of k-mers and a novel classification algorithm.

In its fastest mode of operation, for a simulated metagenome of 100 bp
reads, Kraken processed over 4 million reads per minute on a single
core, over 900 times faster than Megablast and over 11 times faster
than the abundance estimation program MetaPhlAn. Kraken’s accuracy is
comparable with Megablast, with slightly lower sensitivity and very
high precision.

See the Kraken home page [https://ccb.jhu.edu/software/kraken/]
for more info.

Let’s assign taxonomic labels to our binning results using
Kraken. First, we need to compare the genome bins against the
Kraken database:

cd /vol/spool/workdir/assembly/megahit_out/maxbin
mkdir kraken

for i in maxbin.*.fasta
do
qsub -cwd -N kraken_$i -b y \
/usr/local/bin/kraken --db /usr/local/share/krakendb --threads 1 --fasta-input $i --output kraken/$i.kraken
done

If you need the full taxonomic name associated with each input
sequence, Kraken provides a script named kraken-translate that produces two
different output formats for classified sequences. The script operates
on the output of kraken:

cd kraken
for i in *.kraken
do
qsub -cwd -b y -o $i.labels \
/usr/local/bin/kraken-translate --db /usr/local/share/krakendb $i
done

Does the abundance of the bins match the 16S profile of the community?

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Metagenomics Workshop!

 		
 Setting up your de.NBI Cloud SimpleVM instance

 		
 The Tutorial Data Set

 		
 FastQC Quality Control

 		
 Assembly

 		
 Velvet Assembly

 		
 Step 1: velveth

 		
 Step 2: velvetg

 		
 MEGAHIT Assembly

 		
 metaSPAdes Assembly

 		
 IDBA-UD Assembly

 		
 Ray Assembly

 		
 Gene Prediction

 		
 Assembly Evaluation

 		
 Read Mapping

 		
 MetaQUAST

 		
 Binning

 		
 MaxBin Binning

 		
 MetaBAT Binning

 		
 Classification

 		
 Genome Taxonomy Database (GTDB)

 		
 Kraken Taxonomic Sequence Classification System

_static/ajax-loader.gif

